DefinePK

DefinePK hosts the largest index of Pakistani journals, research articles, news headlines, and videos. It also offers chapter-level book search.

Real-Time data integration in diagnostic devices for predictive modeling of infectious disease outbreaks


Article Information

Title: Real-Time data integration in diagnostic devices for predictive modeling of infectious disease outbreaks

Authors: Francisca Chibugo Udegbe, Ejike Innocent Nwankwo, Geneva Tamunobarafiri Igwama, Janet Aderonke Olaboye

Journal: Computer science & IT research journal

HEC Recognition History
No recognition records found.

Year: 2023

Volume: 4

Issue: 3

Language: en

DOI: 10.51594/csitrj.v4i3.1502

Categories

Abstract

The integration of real-time data in diagnostic devices is transforming the landscape of infectious disease management by enabling predictive modeling of outbreaks. Traditional diagnostic approaches, often constrained by delayed data processing and analysis, fall short in rapidly evolving scenarios like infectious disease outbreaks. Recent advancements in real-time data integration are addressing these limitations, offering significant improvements in predictive accuracy and timely response. Real-time data integration leverages continuous streams of information from various sources, including diagnostic devices, electronic health records, and environmental sensors, to provide a comprehensive view of disease dynamics. By incorporating this data into predictive models, healthcare professionals can better anticipate and manage outbreaks. For instance, integrating data from wearable sensors and mobile health applications allows for continuous monitoring of health indicators, which can signal early warning signs of disease spread. This approach enhances the ability to detect patterns and anomalies that might indicate an impending outbreak. Moreover, predictive modeling powered by real-time data facilitates proactive interventions. By analyzing trends and correlations in real-time, these models can forecast potential outbreak scenarios, optimize resource allocation, and guide public health responses. For example, predictive models can forecast the spread of diseases based on current infection rates and social behavior patterns, enabling targeted interventions and timely public health advisories. Despite the benefits, the integration of real-time data into diagnostic devices presents several challenges. Ensuring data accuracy and consistency, maintaining privacy and security, and managing the vast amounts of data generated are critical issues that need addressing. Advanced data analytics and machine learning techniques are essential for processing and interpreting this data effectively. Additionally, interoperability among various data sources and systems is crucial for a seamless integration process. In summary, the integration of real-time data in diagnostic devices offers a powerful tool for predictive modeling of infectious disease outbreaks. It enhances the accuracy of forecasts, improves response strategies, and ultimately contributes to more effective management of public health crises. As technology advances, addressing the associated challenges will be key to maximizing the potential of this innovative approach.
Keywords: Real-Time, Data Integration, Diagnostic Devices, Predictive Modeling, Infectious Disease Outbreaks.


Paper summary is not available for this article yet.

Loading PDF...

Loading Statistics...