DefinePK

DefinePK hosts the largest index of Pakistani journals, research articles, news headlines, and videos. It also offers chapter-level book search.

Establishing Time-Depth Relationships Constrained by Modes of the Reservoir Architecture


Article Information

Title: Establishing Time-Depth Relationships Constrained by Modes of the Reservoir Architecture

Authors: Huijing Fang, Shubo Yang, Guocan Zhang, Huaimin Xu

Journal: International journal of petroleum technology

HEC Recognition History
No recognition records found.

Year: 2022

Volume: 9

Language: en

DOI: 10.54653/2409-787X.2022.09.1

Keywords: ReservoirwaveletSeismic well tieArchitecture modeTime-depth relationship

Categories

Abstract

Time-depth relationships (TDRs) can connect seismic and wireline logs, both essential characterization data of reservoirs. The seismic well tie is always a complex work on account of the complicated reservoir structures. Since seismic and logging data are responses of reservoir architectures, the seismic well tie can be efficiently improved constrained by the reservoir architectures. This study adopts a clastic reservoir as the study area. Three architecture modes (i.e., normal cycle mode, inverse-normal cycle mode, and homogeneous-normal cycle mode) are summarized based on combinations of architecture elements. For the generation of the synthetic seismograms, optimized wavelets (i.e., wavelet A, wavelet B, and wavelet C) are suitable for the wells belonging to normal cycle mode, inverse-normal cycle mode, and homogeneous-normal cycle mode, respectively. Precise TDRs are established by matching the synthetics and seismic traces. Wells belong to the same architecture mode and have similar TDRs. The two-way travel time is shortest in the same depth interval of homogeneous-normal cycle mode compared to other architecture modes.


Paper summary is not available for this article yet.

Loading PDF...

Loading Statistics...