DefinePK

DefinePK hosts the largest index of Pakistani journals, research articles, news headlines, and videos. It also offers chapter-level book search.

A Parallel Computation Algorithm for Image Feature Extraction


Abstract

 We present a new method for image feature-extraction for learning image classification. An image is represented by a feature vector of distances that measure the dissimilarity between regions of the image and a set of fixed image prototypes. The method uses a text-based representation of images where the texture of an image corresponds to patterns of symbols in the text string. The distance between two images is based on the LZ-complexity of their corresponding strings. Given a set of input images, the algorithm produces cases that can be used by any supervised or unsupervised learning algorithm to learn image classification or clustering. A main advantage in this approach is the lack of need for any image processing or image analysis. A non-expert user can define the image-features by selecting a few small images that serve as prototypes for each class category. The algorithm is designed to run on a parallel processing platform. Results on the classification accuracy and processing speed are reported for several image classification problems including aerial imaging.


Paper summary is not available for this article yet.

Loading PDF...

Loading Statistics...