DefinePK hosts the largest index of Pakistani journals, research articles, news headlines, and videos. It also offers chapter-level book search.
Title: AN AI-POWERED HIERARCHICAL DEEP NEURAL NETWORK (HIDENN) APPROACH FOR COMPUTATIONAL SCIENCE AND ENGINEERING"
Authors: Kinza Urooj, Sumayya Bibi, Urooj Fatima, Waqas Arif, Larib Fatima, Asad Riaz, Saad Khan Baloch, Umm e Habiba
Journal: Spectrum of Engineering Sciences
| Category | From | To |
|---|---|---|
| Y | 2024-10-01 | 2025-12-31 |
Publisher: Sociology Educational Nexus Research Institute
Country: Pakistan
Year: 2025
Volume: 3
Issue: 8
Language: en
Keywords: Machine learningDeep learningARTIFICIAL INTELLIGENCEReduced order modelData-driven discoveryMultiscale simulation
In this work, a unified AI-framework named Hierarchical Deep Learning Neural Network (HiDeNN) is proposed to solve challenging computational science and engineering problems with little or no available physics as well as with extreme computational demand. The detailed construction and mathematical elements of HiDeNN are introduced and discussed to show the flexibility of the framework for diverse problems from disparate fields. Three example problems are solved to demonstrate the accuracy, efficiency, and versatility of the framework. The first example is designed to show that HiDeNN is capable of achieving better accuracy than conventional finite element method by learning the optimal nodal positions and capturing the stress concentration with a coarse mesh. The second example applies HiDeNN for multiscale analysis with sub-neural networks at each material point of macroscale. The final example demonstrates how HiDeNN can discover governing dimensionless parameters from experimental data so that a reduced set of input can be used to increase the learning efficiency. We further present a discussion and demonstration of the solution for advanced engineering problems that require state-of-the-art AI approaches and how a general and flexible system, such as HiDeNN-AI framework, can be applied to solve these problems..
Loading PDF...
Loading Statistics...